A uniqueness problem for entire functions related to Brück’s conjecture

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolation for Entire Functions of Exponential Type and a Related Trigonometric Moment Problem

A classical theorem of Hausdorff-Young shows that when 1 < p < 2, the system of equations rp(n) = cn (-oo < n < oo) admits a solution <p in Lq{~tt,<tt) whenever {c„} E /', Here, as usual, <p denotes the complex Fourier transform of <p and q is the conjugate exponent given by p~l + q~l = 1. The purpose of this note is to show that if a set {Xn} of real or complex numbers is "sufficiently close" ...

متن کامل

Uniqueness Theorems of Difference Operator on Entire Functions

A function f(z) is called meromorphic, if it is analytic in the complex plane except at poles. It is assumed that the reader is familiar with the standard symbols and fundamental results of Nevanlinna theory such as the characteristic function T(r, f), and proximity function m(r, f), counting function N(r, f) (see [1, 2]). In addition we use S(r, f) denotes any quantity that satisfies the condi...

متن کامل

Further Results on Uniqueness of Entire Functions Sharing One Value

In this paper, we study the uniqueness problems of entire functions sharing one value with weight l (l = 0,1,2). The results in this paper improve the related results given by X.Y. Zhang and W.C. Lin, M.L. Fang, C.C. Yang and X.H. Hua, etc.

متن کامل

An extremal problem for a class of entire functions

Let f be an entire function of the exponential type, such that the indicator diagram is in [−iσ, iσ ], σ > 0. Then the upper density of f is bounded by cσ , where c≈ 1.508879 is the unique solution of the equation log (√ c2 + 1 + c) =√1 + c−2. This bound is optimal. To cite this article: A. Eremenko, P. Yuditskii, C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Publishe...

متن کامل

Unique solvability of a coupling problem for entire functions

We establish the unique solvability of a coupling problem for entire functions which arises in inverse spectral theory for singular second order ordinary differential equations/two-dimensional first order systems and is also of relevance for the integration of certain nonlinear wave equations. Results Let σ be a discrete set of nonzero reals such that the sum ∑

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematica Slovaca

سال: 2018

ISSN: 0139-9918,1337-2211

DOI: 10.1515/ms-2017-0148